講義ノート

RFM分析とFSP分析;顧客データの分析方法

RFM分析とFSP(Frequency, Monetary value, and Product categories)は、どちらも顧客データを分析し、マーケティング戦略や顧客関係管理(CRM)に活用する手法ですが、注目するデータポイントと目的に違いがあります。

RFM分析

RFM分析は、Recency(最終購入日からの経過時間)、Frequency(購入頻度)、Monetary value(購入金額の総額)の3つの指標を基に顧客を評価、分類する手法です。

Recency最終購入日からの経過時間
Frequency購入頻度
Monetary value購入金額の総額

この分析により、顧客の購買行動を理解し、どの顧客が最も価値が高いか(たとえば、最近購入した、頻繁に購入する、高額を購入する顧客)を識別できます。

RFM分析は、特にリテンションマーケティング(既存顧客の維持・再購入促進)に有効であり、セグメントごとに異なるマーケティング戦略を展開するための洞察を提供します。

FSP分析

FSP分析では、Frequency(購入頻度)、Monetary value(購入金額の総額)、さらにProduct categories(購入した商品カテゴリ)の3つの指標を使用して顧客を分析します。

Frequency購入頻度
Monetary value購入金額の総額
Product categories購入した商品カテゴリ

FSPはRFM分析をさらに発展させたもので、顧客の購買行動だけでなく、どのような種類の商品に興味を持っているかを考慮に入れます。これにより、顧客が興味を持つ可能性が高い商品カテゴリを特定し、よりパーソナライズされたマーケティングや商品推薦が可能になります。

FSP分析は、顧客に対するより細かい理解を深め、製品のクロスセルやアップセルの機会を見つけるのに特に有効です。

RFM分析とFSP分析の主な違い

  • 指標の違い: RFMは最終購入日、購入頻度、購入金額に焦点を当てます。FSPは購入頻度と購入金額に加え、購入商品カテゴリを考慮します。
  • 目的の違い: RFMは顧客のロイヤリティや価値を把握し、セグメントに応じたコミュニケーションを行うことに重点を置きます。FSPはそれに加え、顧客の興味・関心をより深く理解し、商品の推薦やクロスセリングを最適化することを目的とします。
  • 適用範囲の違い: RFM分析は幅広い業種で適用可能ですが、FSP分析は商品カテゴリの多様性がビジネスの重要な要素となる小売業などに特に有効です。

どちらの分析手法も、顧客データを活用してビジネス成果を最大化するための重要なツールですが、目的や必要とするデータの種類に応じて選択・適用する必要があります。

金融機関にお勤めですか?
匿名アンケートのご協力をお願いします!

より良い教育プログラム開発のため、
3分程度で終わるアンケートにご協力いただけませんでしょうか?
猿樂 昌之

猿樂 昌之

猿樂事務所(同 つむぐ人たち)の代表です。金融機関向け研修での補足情報や経営の知見を発信しております。よろしければSNSをフォローください。

こちらの記事も読まれています

独自リサーチ

  1. 銀行の「アルムナイ(卒業生組織)」はワークするのか?

  2. 『フジ子さん』を体験|オンライン・アシスタントが業務に与えるインパクト!活用法、メリット・デメリットまで

  3. 文章生成AIで、オウンドメディアをスピード構築できるか?手順・プロンプト・注意点まで実体験から徹底解説

  4. 注目のIBJ(東証:6071)結婚相談所加盟店の無料説明会に参加してきました

あわせてお読みください

  1. モチベーション理論12選;組織を考える上で知っておきたい行動源泉ロジック

  2. 資金繰り「悪化」要因とシグナル17選;典型的なパターンをおさえておこう

  3. チャネル政策|開放的・選択的・専属的(排他的)とは?メリットデメリットや商品との相性

  4. 金融機関による資金繰り表の評価と対応のポイント

  5. 探索財、経験財、信頼財|商品特性を理解したマーケティングを

  6. リーダーシップ理論8選;優れたリーダーとはどのようなリーダーなのか?どう育成するか?

  7. 「資金繰り表」の基本ガイド;図表でわかりやすい解説と関数入りフォーマット

  8. 企業変革理論6選;ロジックを踏まえたチェンジマネジメントを

  9. 組織改善の施策15選

メールマガジン登録

TOP